lunes, 26 de marzo de 2012

Premio Abel 2012 para el matemático Endre Szemerédi, teórico de la computación



El Premio Abel  de este año ha recaído en Endre Szemerédi, del Instituto de Matemáticas Aplicadas Rényi Alfré (Hungría), según ha anunciado la Academia Noruega de las Ciencias y las Letras. El galardón  reconoce las contribuciones a la informática y teorías de números de este pionero en las ciencias de la computación.
Endre Szemerédi. Imagen: Wikipedia
Endre Szemerédi. Imagen: Wikipedia

La Academia de Ciencias y Letras de Noruega ha concedido el Premio Abel 2012 al húngaro Endre Szemerédi (Budapest, 1940), según ha anunciado hoy en Oslo el presidente de esa academia, Nils Christian Stenseth.
Szemerédi es investigador del Instituto de Matemáticas Aplicadas Rényi Alfré (Academia Húngara de Ciencias, Budapest) y catedrático del departamento de Ciencias de la Computación de Rutgers en la Universidad Estatal de Nueva Jersey (EEUU).
El galardón, considerado el nobel de las matemáticas y dotado con casi 800.000 euros, reconoce “sus contribuciones fundamentales a las matemáticas discretas (estudian estructuras que forman la base de la informática teórica y de la teoría de la información) y el profundo y duradero impacto de sus aportaciones sobre la teoría aditiva de números y la teoría ergódica (con medida 0 o 1)”.
El matemático húngaro fue uno de los primeros en darse cuenta de la importancia de la teoría en las ciencias de la computación. También ha hecho aportaciones relevantes a otras áreas de la matemática, con la publicación de más de 200 trabajos científicos.
El premio Abel, instituido en 2003, reconoce contribuciones “de extraordinaria profundidad e influencia en las ciencias matemáticas”. Endre Szemerédi recogerá el galardón en una ceremonia presidida por el Rey Harald el próximo 22 de mayo.
El matemático impartió en marzo de 2011 un coloquio en el Instituto de Ciencias Matemáticas (ICMAT), en Madrid. Su director, Manuel de León, señala que los temas de investigación Szemerédi “son de enorme interés tanto teórico cómo por sus aplicaciones, y España debería hacer un esfuerzo para potenciarlos con programas y becas específicos”.
Matemáticas discretas e imaginación extraordinaria
La carrera de Endre Szemerédi como matemático empezó tarde. Cursó un año en la Facultad de Medicina y trabajó en una fábrica, antes de pasar finalmente a las matemáticas. Estudió en la Universidad Eötvös Loránd de Budapest, donde obtuvo el grado Master of Science (M.Sc.) en 1965. Después, se incorporó a la Universidad Estatal de Moscú, donde realizó el doctorado en 1970 bajo la dirección de Israel M. Gelfand.
Su excepcional talento matemático fue descubierto por su mentor, Paul Erdös, cuando era joven estudiante en Budapest. Szemerédi estuvo a la altura de las expectativas de su maestro, y demostró varios teoremas fundamentales de gran importancia. Muchos de sus resultados han generado investigación para la posteridad y puesto los cimientos de nuevas orientaciones en matemáticas.
En 2010, con motivo de su 70 cumpleaños, el Instituto de Matemáticas Aplicadas Rényi Alfréd y la Sociedad Matemática János Bolyai organizaron en Budapest un congreso para celebrar su éxito. Según el libro An Irregular Mind, publicado antes del congreso, “Szemerédi tiene un ‘intelecto fuera de lo común’, su cerebro está configurado de forma diferente al de la mayoría de los matemáticos. Somos muchos quienes admiramos su manera única de pensar, su extraordinaria imaginación”.
El investigador ha revolucionado las matemáticas discretas mediante la introducción de técnicas originales e ingeniosas y la resolución de numerosos problemas fundamentales. Esta parte de las matemáticas estudia estructuras como los grafos, las sucesiones, las permutaciones y las configuraciones geométricas. Las redes de comunicación, como internet, pueden ser descritas y analizadas gracias a las herramientas de la teoría de grafos, mientras que el diseño de algoritmos informáticos se basa esencialmente en el conocimiento de las matemáticas discretas.
Los trabajos de Szemerédi han llevado la combinatoria al centro de la escena de las matemáticas, revelando sus estrechos vínculos con campos como la teoría aditiva de números, la teoría ergódica, la informática teórica y la geometría de incidencia.
En 1975, Endre Szemerédi atrajo por vez primera la atención de muchos matemáticos gracias a su solución de la famosa conjetura de Erdős-Turán, demostrando que en todo conjunto de enteros con densidad positiva existen progresiones aritméticas arbitrariamente largas. Esto era sorprendente ya que, aun en el supuesto de progresiones de longitudes 3 o 4, los esfuerzos exigidos anteriormente, tanto de Klaus Roth como del propio Szemerédi, habían sido enormes.
La prueba de Szemerédi era una obra maestra de razonamiento combinatorio, y se reconoció inmediatamente su excepcional profundidad e importancia. Un paso clave en la prueba, actualmente conocida como el Lema de Regularidad de Szemerédi, es una clasificación estructural de los grafos grandes. Con el tiempo, este lema se ha convertido en una herramienta esencial tanto para la teoría de grafos como para la informática teórica, permitiendo resolver problemas mayores de ensayo de propiedades, y dando nacimiento a la teoría de los grafos límite.
Aparte de su impacto en las matemáticas discretas y la teoría aditiva de números, el teorema de Szemerédi inspiró a Hillel Furstenberg a desarrollar la teoría ergódica en nuevas direcciones. Furstenberg concibió una nueva demostración del teorema de Szemerédi, al establecer el teorema de recurrencia múltiple en la teoría ergódica, con lo que, inesperadamente, se vinculaban cuestiones de matemáticas discretas a la teoría de sistemas dinámicos. Esta conexión fundamental condujo a numerosos desarrollos adicionales, tales como el teorema de Green-Tao, que afirma la existencia de progresiones aritméticas arbitrariamente largas de números primos.
Szemerédi ha hecho muchas más aportaciones perspicaces, esenciales e influyentes, tanto en materia de matemáticas discretas como en informática teórica. Entre los ejemplos de matemáticas discretas se incluyen el teorema de Szemerédi-Trotter, el método semialeatorio de Ajtai-Komlós-Szemerédi, el teorema del producto-suma de Erdős-Szemerédi y el lema de Balog-Szemerédi-Gowers. Entre los ejemplos de informática teórica se incluyen la red de ordenación de Ajtai-Komlós-Szemerédi, el esquema de hashing de Fredman-Komlós-Szemerédi, y el teorema de Paul-Pippenger-Szemerédi-Trotter, que separa el tiempo lineal determinista del no-determinista.

No hay comentarios:

Publicar un comentario

Entradas populares

 
Ver DALCAME en un mapa más grande