Para generar imágenes con ultrasonido, un técnico primero aplica un gel líquido a la piel del paciente, que actúa para transmitir ondas de ultrasonido. Luego se presiona una sonda, o transductor, contra el gel, que envía ondas de sonido al cuerpo que hacen eco en las estructuras internas y regresan a la sonda, donde las señales de eco se traducen en imágenes visuales.
Para los pacientes que requieren largos períodos de obtención de imágenes, algunos hospitales ofrecen sondas adheridas a brazos robóticos que pueden sostener un transductor en su lugar sin cansarse, pero el gel de ultrasonido líquido fluye y se seca con el tiempo, interrumpiendo la obtención de imágenes a largo plazo.
En los últimos años, los investigadores han explorado diseños de sondas de ultrasonido extensibles que proporcionarían imágenes portátiles y de bajo perfil de los órganos internos. Estos diseños dieron una matriz flexible de diminutos transductores de ultrasonido, con la idea de que dicho dispositivo se estiraría y se ajustaría al cuerpo del paciente.
Pero estos diseños experimentales han producido imágenes de baja resolución, en parte debido a su estiramiento: al moverse con el cuerpo, los transductores cambian de ubicación entre sí, distorsionando la imagen resultante.
“La herramienta portátil de imágenes por ultrasonido tendría un enorme potencial en el futuro del diagnóstico clínico. Sin embargo, la resolución y la duración de las imágenes de los parches de ultrasonido existentes son relativamente bajas y no pueden obtener imágenes de órganos profundos”, dice Chonghe Wang, estudiante de posgrado del MIT.
Una mirada al interior
La nueva etiqueta adhesiva de ultrasonido del equipo del MIT produce imágenes de mayor resolución durante un período más prolongado al combinar una capa adhesiva elástica con una matriz rígida de transductores. “Esta combinación permite que el dispositivo se adapte a la piel mientras mantiene la ubicación relativa de los transductores para generar imágenes más claras y precisas”. Wang dice.
La capa adhesiva del dispositivo está hecha de dos capas delgadas de elastómero que encapsulan una capa intermedia de hidrogel sólido, un material principalmente a base de agua que transmite fácilmente las ondas sonoras. A diferencia de los geles de ultrasonido tradicionales, el hidrogel del equipo del MIT es elástico y elástico.
"El elastómero previene la deshidratación del hidrogel", dice Chen, un postdoctorado del MIT. "Solo cuando el hidrogel está altamente hidratado, las ondas acústicas pueden penetrar de manera efectiva y brindar imágenes de alta resolución de los órganos internos".
La capa de elastómero inferior está diseñada para adherirse a la piel, mientras que la capa superior se adhiere a una matriz rígida de transductores que el equipo también diseñó y fabricó. Toda la etiqueta de ultrasonido mide aproximadamente 2 centímetros cuadrados de ancho y 3 milímetros de grosor, aproximadamente el área de un sello postal.
Los investigadores pasaron la etiqueta de ultrasonido a través de una serie de pruebas con voluntarios sanos, que usaron las etiquetas adhesivas en varias partes de sus cuerpos, incluidos el cuello, el pecho, el abdomen y los brazos. Las pegatinas permanecieron adheridas a la piel y produjeron imágenes claras de las estructuras subyacentes durante un máximo de 48 horas. Durante este tiempo, los voluntarios realizaron una variedad de actividades en el laboratorio, desde sentarse y pararse, trotar, andar en bicicleta y levantar pesas.
A partir de las imágenes de las pegatinas, el equipo pudo observar el cambio de diámetro de los principales vasos sanguíneos cuando estaban sentados o de pie. Las pegatinas también capturaron detalles de órganos más profundos, como la forma en que el corazón cambia de forma a medida que se esfuerza durante el ejercicio. Los investigadores también pudieron observar cómo el estómago se distendía y luego se encogía mientras los voluntarios bebían y luego expulsaban el jugo de su sistema. Y mientras algunos voluntarios levantaban pesas, el equipo pudo detectar patrones brillantes en los músculos subyacentes, lo que indica un microdaño temporal.
"Con las imágenes, podríamos capturar el momento en un entrenamiento antes del uso excesivo y detenernos antes de que los músculos se vuelvan adoloridos", dice Chen. "Todavía no sabemos cuándo podría ser ese momento, pero ahora podemos proporcionar datos de imágenes que los expertos pueden interpretar".
El equipo está trabajando para que las pegatinas funcionen de forma inalámbrica. También están desarrollando algoritmos de software basados en inteligencia artificial que pueden interpretar y diagnosticar mejor las imágenes de las pegatinas. Luego, Zhao prevé que los pacientes y los consumidores puedan empaquetar y comprar adhesivos de ultrasonido, y usarlos no solo para monitorear varios órganos internos, sino también la progresión de los tumores, así como el desarrollo de los fetos en el útero.
“Imaginamos que podríamos tener una caja de calcomanías, cada una diseñada para representar una ubicación diferente del cuerpo”, dice Zhao. “Creemos que esto representa un gran avance en dispositivos portátiles e imágenes médicas”.
Esta investigación fue financiada, en parte, por el MIT, la Agencia de Proyectos de Investigación Avanzada de Defensa, la Fundación Nacional de Ciencias, los Institutos Nacionales de Salud y la Oficina de Investigación del Ejército de EE. UU. a través del Instituto de Nanotecnologías para Soldados del MIT.
Traducido del original Ver noticia desde el MIT
No hay comentarios:
Publicar un comentario